Dingze Zhu Sun ISVe

Kernel comparison of OpenSolaris, Windows Vista and

Linux 2.6

The idea of writing this paper is evoked by Max lng's view on Solaris, BSD and
Linux. The comparison of advantages and disadvastaghong quasi-Unix systems
is an oft-told tale. However, this article looksadrthe three kernel subsystems of the
latest operating system release — OpenSolaris, dMisd/ista and Linux kernel 2.6.
The simple reason is that they are the most widelgd and welcomed operating
systems within business environment and developanwinities.

There are lots of criteria to value a system, lmdaubtedly, the fundamental role of
an operating system in computer science remainsamged. It can be thought of as
having three objectives:

v Efficiency: allowing system resources (especially hardwardjet used in an
efficient manner.

v' Evolvement: The only thing that never changes is change. kld be
constructed in such a way as to permit the effectilevelopment and
introduction of new system functions without ingthg with original
service.

v' User-friendliness: We need to face OS every day. A user-friendlgriiaice
is compulsory, otherwise you will be dropped nottierahow well you
follow the above two criteria.

Inevitability, OS needs functions like process/#ttemanagement, which allocates
and calls threads under a particular dispatchdcyainemory management and file
management. We will compare these subsystems helagldol. (User friendliness will

not be discussed here in this article, since wef@rasing on kernel comparison.)
There are some similar concepts between Linux goehSolaris, while concepts in
Windows Vista are quite different.

Dingze Zhu Sun ISVe

Process and Thread M anagement

OpenSolaris

OpenSolaris implements multilevel thread suppodigieed to provide considerable
flexibility in exploiting processor resources. Fofollowing new concepts are
implemented in OpenSolaris.

» Process: This is the normal UNIX process and includesuber’'s address space,
stack, and process control block.

» User-leve threads. Implemented through a threads library in the adsdrspace
of a process, these threads are invisible to thé& @Ser-level thread (ULT)10 is
a user-created unit of execution within a process.

> Lightweight processes. A lightweight process (LWP) can be viewed as a
mapping between user level threads and kerneldbrésach LWP supports ULT
and maps to one kernel thread. LWPs are schedyld¢debkernel independently
and may execute in parallel on multiprocessors.

> Kerne threads. These are the fundamental entities that can hedsted and
dispatched to run on one of the system processors.

As is showed in Figure @s-Lec command display system processes and threads.

-3.00# ps -Lec | more
TTY LTIME CMD

3
3 1
7
i
7
[
-
7
-
7 4
bl =
] 5
-
[y L=
a2 ~
]
7 o
[=
- i
[=]
7
[
7
]
7
[
7
]

[Vu]

[fu}

[Vu]

Figure 0 Output from Solaris 10 update 6

Figure 1 below illustrates the relationship amdmegse four entities.

Dingze Zhu Sun ISVe

Process
User User
thread thread
/ Lightweight Lightweight A
process (LWP) [| process (LWP)
syscall() \ L * h syscall()
Kernel Kernel
thread thread

System calls

Kermnel

Hardware

Figure 1 opensolaris thread madel

The three-level thread structure (ULT, LWP, kertktead) in OpenSolaris is
intended to facilitate thread management by theafBto provide a clean interface to
applications.

The user thread interface can be a standard thikeady. A defined ULT maps onto a
LWP, which is managed by the OS and which has ddfstates of execution, defined
subsequently. An LWP is bound to a kernel threath wione-to-one correspondence
in execution states. Thus, concurrency and exatusionanaged at the level of the
kernel thread.

In addition, an application has access to hardwlam@ugh an application program
interface (API) consisting of system calls. The ARbws the user to invoke kernel
services to perform privileged tasks on behalfhaf talling process, such as read or
write a file, issue a control command to a devareate a newroces or thread, and
allocate memory for the process to use, and so on.

The change of thread model drivers the alteringrotess data structure. OpenSolaris
retains this basic structure but replaces the pesmrestate block with a list of
structures containing one data block for each LWP.

The LWP data structure includes the following elatae

An LWP identifier
® The priority of this LWP and hence the kernel tlréfzat supports it

! Richard McDougall, Jim Mauro ,Solaris internals 2@8arson Education

3

Dingze Zhu

Sun ISVe

A signal mask that tells the kernel which signails e accepted
Saved values of user-level registers (when the isNf@t running)

® The kernel stack for this LWP, which includes systeall arguments, results, and error

codes for each call level
® Resource usage and profiling data
Pointer to the corresponding kernel thread
® Pointer to the process structure

UNIX process structure

Process ID

OpenSolaris process structure

User IDs

Process [D

User [Ds

Signal dispatch table

Memory map

Prionty

Signal mask

Registers

File descriptors

STACK

Processor state

Signal dispatch table

Memory map

[o+—

File descriptors
LWP2 LWP 1
LWPID —— LWP Iy
Pronty Pricrity
Signal mask Signal mask
Registers Registers
STACK STACK
e e

Figure 2 Comparison of Solaris Process structudetaaitional Unix Process structure

Windows Vista

Vista process design is driven by the need to peodupport for a variety of OS
environments. Accordingly, the native process stmas and services provided by the
Windows Kernel are relatively simple and generalppse, allowing each OS
subsystem to emulate a particular process struetugefunctionality. Here are some
of the important characteristics of Windows proesss
® \Windows processes are implemented as objects.
® An executable process may contain one or moredirea
® Both process and thread objects have built-in symghation capabilities.

Dingze Zhu Sun ISVe

Figure 3 below illustrates the way in which a process esato the resources it
controls or uses. Each process is assigned a seaudess token, called the primary
token of the process.

~

Access 1

Ny

/*"'__ _"“‘\ Virtual address descriptors
, Process \
1

c I — = = 2 —
abject

/
Available

Handlz tablz objects
T e .

Handle1

Handle2

Handlz3

,
e
o

Figure 3 a windows process and its thread
When a user first logs on, Vista creates an adoé®s that includes the security 1D
for the user. Every process that is created byies on behalf of this user has a copy
of this access token. Windows uses the token tiolatal the user’s ability to access
secured objects or to perform restricted functionsthe system and on secured
objects. The access token controls whether theepsocan change its own attributes.
In this case, the process does not have a handieedpto its access token. If the
process attempts to open such a handle, the sesystiem determines whether this is
permitted and therefore whether the process maygehiis own attributes.
Also related to the process is a series of blobks define the virtual address space
currently assigned to this process. The processotatirectly modify these structures
but must rely on the virtual memory manager, whcbvides a memory allocation
service for the process.
Finally, the process includes an object table, w#indles to other objects known to
this process. One handle exists for each threathic@a in this object.
In addition, the process has access to a file bhjatt to a section object that defines a
section of shared memory.
The object-oriented structure of Windows facilitatbe development of a
general-purpose process facility. Windows Vista esalise of two types of
process-related objects: processes and thread3p&sSolaris, a process is an entity
corresponding to a user job or application that®wasources, such as memory, and

2 Russinovich, M., and Solomon, Blicrosoft Windows Internals: Microsoft Windows Server(TM) 2003, Windows XP, and

Windows 2000. Redmond, WA: Microsoft Press, 2005

Dingze Zhu Sun ISVe

opens files. A thread is a dispatchable unit ofkntbat executes sequentially and is
interruptible, so that the processor can turn tutlzer thread.

Windows Vista supports concurrency among procebseause threads in different
processes may execute concurrently. Moreover, phelthreads within the same
process may be allocated to separate processorsxaumite simultaneously. A
multithreaded process achieves concurrency witttoaitovernead of using multiple
processes. Threads within the same process camrggehnformation through their
common address space and have access to the gleamdces of the process.
Threads in different processes can exchange intwm#rough shared memory that
has been set up between the two processes.

An object-oriented multithreaded process is ancieffit means of implementing a
server application. For example, one server procasservice a number of clients.

Linux Kernel 2.6

A process, or task, in Linux is represented byask struct data structure. The

task_struct data structure contains information in a numbesatégories:

1. Unlike Vista and opensolaris, processes in Linug loth containers and the
schedulable entities; processes can share addrass snd system resources,
making processes effectively usable as threads.

2. Also unlike Vista and OpenSolaris, Most servicesiarplemented in the kernel,
with the exception of many networking functions.ushLinux kernel is relative
bigger in size comparing former two OS.

Linux provides a unique solution in that it does recognize a distinction between
threads and processes. Using a mechanism similtretdightweight processes of
OpenSolaris, user-level threads are mapped intoekégvel processes. Multiple
user-level threads that constitute a single usetlprocess are mapped into Linux
kernel-level processes that share the same grouppHI3 enables these processes to
share resources such as files and memory and td theneed for a context switch
when the scheduler switches among processes sathe group.

Conclusion

Solaris and Windows both exist for dozens of yesndle Linux is very young and

still has long way to go. Obviously, three OS arglemented following popular
operating system theories. The most awkward olesiadhe ability for us to access
the kernel implementation and debugging. Limiteanyp knowledge, | have no way
to debug or trace thread and process in Windowsa\Wigile OpenSolaris supplies
abundant tools to observe kernel thread.

In the next paper, we will continue to discuss mgnmeanagement and file system.

